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FOREWORD

This report is Part Il of the Final Technical Report of a study
being conducted by the Electrical Engineering Department under the

auspices of the Engineering Experiment Station of Auburn University.

This technical report is submitted toward fulfillment of the require-
ments prescribed in AFOSR Contract F44620-76-C-0054,
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I. INTRODUCTION

Numerous investigators have studied the electiomnnynetic interactions
of thin cylinders over a perfectly conducting ¢round planc 11luminated
by a distant source [1-6]. There have also been numerous studies of
currents induced on infinite cylinders or thin wires near a finitely
conducting ground plane [7-9]. 1In this study a perfectly conducting
cylinder of finite length near a finitely conducting ground plane is
treated by the Singularity Expansion Method (SEM).

A Pocklington type integro~differential equation is formulated for
the current induced on the thin cylinder and its image where the current
on the image is related to the current on the object by the ratio of the
complex reflection coefficient for the appropriate angle of incidence and
polarization involved. In a recent stddy by Sarkar and Strait [10] it
was shown that the above method, termed "reflection method" g&ve results
in the real frequency domain within 10% of the exact Somerfeld formulation
for a horizontal electric dipole as long as the dipole was at least
(O.ZSI\ITF)A from the ground plane. The advantages of the reflection
method are speed of computation and interpretation of results,

Using this "reflection method" in the integro-differential equation,
this study determines some of the effects of ground conductivity and
permittivity upon the natural resonances and natural modes of a thin

finite length cylindrical scatterer above a lossy half space, These

effects are presented in terms of a family of trajectories in the complex
"
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frequency plane as a function of the electrical and geometrical parameters
which define the problem.
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I.  THEORY

DERIVATION OF INTEGRAL EQUATIONS

In Figure 2-1 an infinitely thin-walled, perfectly conducting,
right circular cylinder 1s shown. As indicated the cylinder 1s of
length L, radius a, and height h above an infinite, finitely conducting
ground plane. The system, consistiug of the cylinder, ground plane,
and incident field of electromagnetic radiation is defined in terins of
a combined cartesian and cylindrical coordinaie system. The incident
electromagnetic field propagates in a general direction described by the
angle © with respect to the z-axis. The current induced on the
cylinder by the incident wave is to be determined.

Solutfon of the above defined problem may be greatly faciiitated
by the use of image and reflection theory. Applying image theory, the
cylinder, incident TEM plane wave, and finitely conducting ground plane
are to be replaced by the object cylinder, the image cylinder, and two
free space TEM plane waves as shown in Figure 2-2. Reflection theory
can be used to show that the currents on the image are related to the
currents on the object by the ratio of the complex-reflection coefficient
for the appropriate angle of incidence and polarization of the incident
field [11-14]. The reflection method cannot be expected to give an
exact solution as the cylinder approaches the ground plane [10],
(14-16].

Two coordinate systems are defined by Figure 2-3, the object and

the image coordinate system indicated by the subscripts "0" and "{"
3
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respectively. Note that since the cylinders are identical and parallel,

z, and z, axes are not necessary. Let the "incident field" be defined

as the field plus its refiection from the ground plane. The surface

currents induced on the abject and {its image are considered as source

currents radfating in free space [7]. The free space Green's functions

may be used to compute the scattered field at an arbitrary field point.
In terms of the geometry as defined by Figure 2-3, appropriate

magnetic vector potentials for the object and image are:

Fb(ﬁb) = magnetic vector potential of the object in object
coordinates
I}(ﬁ}) = magnetic vector potential of the image in image
coordinates
Rb = general field point in space measured from the object
coordinate system
ﬁ} = same general field point in terms of the image
coordinates
ﬁb' = a general source point on the object cylinder with
respect to its coordinate system

ﬁ}' = a general source.point on the image cylinder with

respect to 1ts coordinate system

The mngnétic vector potential of the object 1§ expressed as

L
Ry(Ry) = 42 j; R Ry (Ry' 16, (RyiR,' s, (2-1)




A i O b

Primed coordinates indicate source points, unprimed coordinates field

points;

Go(ﬁb;ﬁb') = free space Green's function in object
coordinates

Eb(ﬁb') = surface current density radiating in free space.

In general the free space Green's function has the form

| c-vlﬁb - ﬁb‘l
Go(.k-o;ﬁ()') - — ) (2'2)
lRO ) l

The temporal variation ¢St has been suppressed, where

s = o+ ju, (2-3)
The complex frequency variable, with

Y = s/c (2-4)

¢ = the speed of 1ight in free space.

By the superposition of a cylindrical coordinate system on the

cartesian coordinate system of Figure 2-3, the following may be shown:
IR, - Ryt = [e 2, p 2 20n0n'cos(dn - ¢.')
ﬁb 0 0 0 0o 0 0
X
+ (2 - 28 (2-5)

where, po' = a, a the radius of the cylinder. Therefore,

Tt s T Attt A b oS Tt A, + A o T
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Ro®y) = Folegutgrt) =33 S | Rologttgtir) -

Gy(Pgrbgr2irg' s9g'»2' Jadé ' dz! (2-6)
Reduces to
Mo L 2= R,
t € Uy

Io(poo¢ot2) = F ./0. j‘o R-O“O .Z.) —R]— ad¢o dz (2"7)
where

R, = {o 2 + a2 - 208 cos(é - ¢,') + 2z - 2')2}!’ (2-8)

1 0 0 0 0 *

Assuming no circumferential current components,
Roleg's2') = Kylog'az')a,, (2-9)

Equation (2-7) reduces to

L er -YR
o
- 0 vy € ' 1
6 0 (2-10)
A simiiar process yields
L 2« -YR
u 2
Aiz(pi."'.Z) - zg’ '{ ./0‘ K1(¢..'|Z') ER;—' ld’.idz‘ ’ (2']1)
where
9
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- 2042 cos(é, - ¢5) + (z - 2)°]

(2-12)

The circumferential variations of the axial current on an infinitely

long cylinder over a perfectly conducting ground plane in a static mode

has been derived by Taylor [17]. Using Taylor's equation,

Ky(4502) = lo2) ¢y
0’ “Zva 0V0’%z’

where

i

2
|-‘l-ah

f0(¢0) ‘ + la?ﬁ}cos ¢6

lo(z') = axial variation of object surface current.

(2-13)

(2-14)

As h becomes large, the circumferential variation of the axial current

becomes uniform and thus (2-14) reduces to

(61,2') = Iptz') .
t0¢0'z ‘—ﬁa—' 2’

stmilarly
I.(z") .
[} 1] 1
Ry(ege2') = Zm— 2

The magnétic vector potentfials may now be expressed as
L 2r -yR
u In(z') 1
0 0 €
Aoz(pultooZ) ~ T‘. { { "“2“"’". "'"R"'—" ad¢6dz'

10

(2-15)

(2-16)

{2-17)
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L eor -yR
" I,(z') 2
0 { €
A,_(p,,9,52) = ad¢ tdz'. (2-18)
214 gn .{ { 2na R2 i

Let the general field point of Figure 2-3 be located on the object
cylinder. With this restriction the distance R2 may be calculated in
terms of the object coordinate system; see Figure 2-4. From the law

of sines,

fy sin 4y~ sina = a sin ¢ (2-19)
and from the law of cosines,

012 = 3% + 4n? + 4ah cos ¢ (2-20)
Thus when A; 1s evaluated on the object surface,

py = [a? + 4h% + 4ah cos folk (2-21)

and

1 a sin 00

4" sin” (2-22)

2, 4.2 %

[2® + 4n° + dah cos ¢,]
Note when Ié is evaluated on the surface of the object
Po " A | (2-23)

With the field point on the object cylinder (2-17) and (2-18) may be

written as

N
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uo L 2 lo(z') ‘-.YR'I
Aoz(tg02) = 7w _{ ,Of Tl (2-24)
,2 2 2,
R, = [2a° - 2a%cos(eg - ¢g) + (z - 2')") (2-25)
L 2n -YR
u I,(z") 2
A (4ge2) = 72 { { —}ﬂ——i-n—é-—adﬂdz' (2-26)

2, 4.2 2 . .2 s
Rz = [2a% + 4h® + 4ah cos 00 - 2[a" + 4h" + 4ah cos 00] .
2.l
a cos(¢1 - ¢1') + (z - 2')°) (2-27)

1 a sin 00

¢ - sin” . (2-28)

5
[a + 4h + 4ah cos 4]

As stated earlier, the currents on the object and image are related
by the complex-reflection coefficient for the appropriate angle of
incidence and polarization involved. If the cylinders are viewed as
consisting of a large number of horizontal dipoles the problem of
reflection reduces to that of a horizontal dipole above a finitely
conducting ground plane. As pointed out by Jordon [14], 1in a plane
parallel to the axis of the dipole the electric field is paraliel to
tha plane of incidence, vertical polarfzation. In a plane parpendicular
to the axis of the dipole the electric field is perpendicular to the
plane of incidence, horizontal polarization. The reflection coefficients
Yor horizontal and vertical polarization, as derived by Jordon 4], are
respectively: 13




i 2 k
: ' sinvy - [(cr + x) - cos” ¢]
.o Rh = (2-29)

siny + [(er +x) - cos® v]

? 2
: (. + x)sin ¥ - [(c + x) - cos® v] :
N b L. r (2-30) :
‘ ’ . (e, * x)sin v + [(c_+ x} - cos? v] j
. g
I. where X= ;;; |
!_ ¢. = relative permittivity of earth

¢ = conductivity of earth i

——

£, = free space permittivity. |

When the plane of incidence i{s neither in a plane parallel or perpendicular

to the axs of the dipole a combination of vertical and horizontal

e pmamee

reflection coefficients must be used. The reflection coefficient for

\ this case is given by

b Rg = R, cos B - R sin B ... (2-31)

b The minus sign comes from Jordon's assumed positive directions of

electric fields for the incident and reflected waves [14]. Figure 2-5

——

defines the geometry of the reflection coefficient. Since uniform

|
|
|
|
|

c¢ircumferantial current has been assumed no generality will be lost
' ‘ by restricting the f{eld point of the object cylinder to 1o along
1 ’l the 11ne 00 = 0. Kith this objective and image current related by

14
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Figure 2-5.Geometry of Reflection Coefficient
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1,(2') = Rgly(z*) (2-32)

It wi11 be necessary to express the reflection coefficient in terms of
the object coordinate system. With this objective in mind the angle ¢
and B defined in Figure 2-5 can be expressed as functions of ¢0' and

z such that,

(2-33)

g 2+l +cos ey
v = tan

L(a2 sin’ ¢°' + (z - z')z)li

and
-

g = tan? 3(5?]-5‘—;-‘])—] X (2-34)

Substituting for v and B 1n equations (2-29), (2-30), and (2-31)

. (c +x=-1) ]
. 51n v J a sin ¢

F "
P5+x~1) ]* (a? sto 93 + (2 - 2)?)
1+ + 1

sin2 L]

yields

{2-35)

(c +x-1) e
(‘r +x) - '__—___1?-'- +1

sin’ v (z -2')

sin! v

Dropping the current subscripts of equation (2-32) the magnetic vector

potentials become 16

(c'_ +x)+ [("' px-1) + 1]" (a2s1n2¢6 + (z-z')z)l’

Nt e

|
!




L 2w -YR
" 1
0 I1(z' € M
Aoz (#002) = 7w /0. S TR o (2-36)
0
L 2» -yR
W RcI(z') 2
- Q F € [ ] [}
Aiz(’O'z) .t { .0/. ~Zva —R-z-— ad¢1dz (2-37)

The total field consists of the incident and scattered field,
where the scattered field is that due to the current, I(z'). To insure

uniqueness the total field must satisfy certain boundary conditions

Del.
[ I (2-38)
The scattered field is related to the induced currents and charges by
Eg(R) = -sA((R) ~ w(R), (2-39)
where I;(F) u the total "scattered" magnetic vector potential

¢s = the total "scattered" electric scalar potential,

which can be related to K; through the Lorentz gauge condition,

v . K (R)
- #(R) = —;3%—,-— : (2-40)
Equation (2-41) becomes
T® - - [x,m Ly vie - K1 ] (2-41)
Votol
17
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since v = = and ¢ = 1/fieey ¥2 = stu e.. Then,
¢ 00 00

E(R) = -s [KS(R') - 5? Vv - Ks(ﬁ)]] . (2-42)
On the surface of the object cylinder, the boundary condition 1s

6- X Er = 0. (2-43)

with n being the outward normal unit vector on the cylinder surface.

An equivalent representation of the boundary condition is

E = - (2-44)
1"ct::zm J Stan j

80 SO

which means that the tangential components of the incident and scattered

fields must cancel on the object surface for boundary conditions to be

satisfied. With the above consideration equation (2-42) becomes
1
E = s[I (R) - 5 9[v - K, (R')]] . (2-45)
1"°tanJ s ;2 s
S0
since

K()«K +K, =A,a +A a, (2-46)
£ 0 0’ 1s °z z iz z

L 2% -YR
~ u ] 1
xs"‘o’J %y _{ A Bl e

"Rl R
+ f T Tl“idl' (2-47)
0 0

18
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Substituting (2-47) into (2-45) one arrives at

E = ]_ .
1ncth 5[ Y v(v- )] zT“

S0
(2-48)

2 ST & Re(z') e
J [ B S asege f [ L S adelz
0 0 L 0 2
Since

(-4uc°s)s [1 - -}2— v(v-)] ;% " -uocosz [] - 12' V(V-)]

Y
':‘Z';'[]'%ZV(V‘)] --72[1-7 v(v~)]
« [(v.) - ¥%] (2-49)

[2-48] becomes

L, 2 -1R,
'4“05(Einc J ) - [3(v) - ¥°) {./ / l&'vzr';l E"RT *
s 0 0
o,
ok Fraey R
ld¢odl + .{ A '—-2-—--- —-ﬁ—-—diﬂ dz' . (2-50)

The differential operator, [v(v.) - 72]. in the above equation

reduces to
. .
(L, - ya) (2-51)
19
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since equation (2-50) has only a z component. Finally (2-50) reduces
to

2
d
"4"05(Einc ) (;2- Y ){j/ -é-ﬁ)- Ry adfbodz

LA l(z ) e‘*“z
f adé Jdz' } : (2-52)
0 "2

The incident field as shown in Figure 2-2 can be expressed as

lﬁ - E, exp[-v(z cos 8 - x sin ©)][cos & a_ + sin © Qz]

nc X

- RJE, exp[-v(z cos © + x sin 8)](cos © Sx - sin @ 52)

(2-53)

where Rv is as defined in equation (2-30). The minus sign again comes
from assumed positive directions of electric fields for the incident
and reflected waves in the derivation of Rv 14]. Since only the axial
component of the incident field is to be used,

Ezinc = Eg exp[-v(z cos 8 - x sin @]sin ©

+ RVE1 exp[-v(z cos @ + x sin 6)]sin o, (2-54)

The axial component of the transmitted field is

20
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E, = (1 - RV)E0 exp[-v(z cos & - x sin 6)]sin @ (2-55)
tran

To determine E1 the fields must satisfy the boundary condition

E:"“ - gian . (2-56)
toan inc

X = =h X = <h

The incident field was defined to contain the direct and reflected
field, therefore

(- RV)E0 exp[-v(z cos 0 + h sin 6)]sin 0 =
Eq expl-v(z cos @ + h sin 8)]sin 0 +

RVE] sin © exp[-v(z cos ® -~ h sin 9)] (2-57)

And upon simplification
Ey = -Eg exp[-y 2h sin 6]. (2-58)

Substituting (2-58) into (2-54), and evaluating Ez1 on the cylinder
nc
axis (approximate kernel), instead of on its surface,

E = E, exp[-y z cos ©]sin © (1 - R, exp[-v 2h sin 6]) .

Zinc
(2-59)
As stated earlier we have restricted the field point on the
object to 1ie along the line ’0 = 0. With this restricticn
2,2 \ 2.8
Ry = [2a° - 2a cos(¢0 - 4 ) + (z - 2*)°] (2-60)

2
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R, = [2a2 + 4n% + dah 2(a? + 4n? "
\ o = [2a ah cos ¢4 - (a“ + 4h° + 4ah cos ¢o)
' ,' . a cos(¢1 - ¢i) + (z - z‘)2] (2-61)
‘ ; where
’ asing¢
l i sin”! [ 0 T . (2-62)
[a2 + 4h% + 4ah cos ¢0]
y 4
Reduces to
2 \ A28
r- Ry L = [2a°(1 - cos ¢0) + {z -~ 2")°] (2-63)
90'0°
: 2 \ 2
: ry = Ry = [(2a° + 4ah)(1 - cos ¢1) + 4h° +
b¢0-00
2 L
(z - 2*)°] . (2-64) y
Let
2 %0
1 - cos ¢6 « 2 sin -3 (2-65)
and d = diameter of the cylinder
- 2a (2-66)
‘, ' 2 2% 21" |
$0 ry= [u sin 5 + (z - z') ] (2-67) ?l
K '
g ¢! Ll |
r, = [(d4? + 8ah)sin® = + an? + (z - 2')?) (2-68) %
‘ 2 —2- il
{
‘ Also defining two functions ﬂ
| 22
)
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folze2'ys) = " adé (2-69)
and
n
f.(z,2',s) / c-wz
Z4Z 9 - [}
AR 0 > adé} (2-70)

Equation (2-52) becomes

2 2 LI
3 ! )
gt )|+ (T2 7) | f o o)
(2-7)

Where Ez is given by equation (2-59). In order to better represent
inc
the complex frequency dependence,

(-amegs) (Eo.ﬂnﬁe'yz cos Oy . va'YZh sin e]) u

L
' e 2
‘4‘ L zll’as (i? - YZ) [fo(Z.Z'.S) + RFf.l(z-Z'sS)]dzl.

(2-72)

This {s the integro-differential equation to be solved for the unknown

induced current.

23
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Application of the Moment Method

The integro-differential equation shall be cast into matrix form
suitable for a numerical solution; this process 1s called the method of
mements 09), Rdl, £1-22]. The portion of the cylinder at ¢,=0, “a thin
wire", 1s broken into N small zones, with the induced current on each
of these zones assumed to be constant. The integration over the "wire"
1s now zpproximated by the sum of integrals over N segments.

Current on the wire may be described by the function

Iz'ys) = L a,(s)l (z') (2-73)
n
where
L unknown coefficient of constant current on nth subsection
and
1, for "<z < z"*]
In(z') L] (2-74)

0, elsewhere

In Figure 2-6 is shown the geometry pertaining to the wethod of
moments. The boundary condition that current at wire ends be zero is
automatically satisfied by allowing the two end zones to extend past
the surface of the cylinder. Zone length, match points, and end points

are given respectively by

" 4 = L/(N-1) = Tength of a zone (2-75)
z, " (m-1)a, m=1,2,...,N (2-76)
™ = (n-372)8, n = 1,2,..., 84 (2-77)
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A1 ey

where L = Tength of wire

N = pumber of zones.

With current on the wire expressed as a pulse function, the integro-

differential equation {2-72) may be written as

(""COS) 3 EO sin © e-Yzcose[]_Rve-YZhsinG]z -

n+l
z
82

E,u"(s) ‘/; 2—% (-a—z-z- - 72)[Fo(z.z'.s)-RFFi(z.z'.s)]dz'.

b4

(2-78)
This equation is to be satisfied at discrete match points, these points
being described by equation (2-76). Derivatives in equation (2-78) will
be approximated by a finite difference technique, that is

2
g;§ - z;igz [F(z + az) - 2F(z) + F(z - az)]. (2-79)

Using (2-79) in (2-78) yields

-y¢ c0so
(-dtcos) §E0 sinea - R, e'72h51"e]
zn+'|
a,(s)

E-z';r %2' /; *Fo“ml-"'5)'(72“2*2)"0(’."-"-5)
z

+ Folzg_102's8) = RELF, (200002"8)- 020 %42)F (2,,2" 8)

ne 2.3....."-1

+ Fi(zm_].z'.s)]‘ dz' (2-80)

ne 2'3'!".““1
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. 1- [.iﬁﬁll + 1] ’ a sin ¢y’
F 1+ [ iﬂéll + 1] | [a2s1n290‘+(zm-2'lk

(0] e

where

' 5 (2-81)
[ 1—5—1 ] [a251n2¢0‘+(zm-z']

A=c + —g-;o (2-82)
h+a(1+cose,')

B = siny,y =tan”! 0 (2-83)

[a?sin?ey' +(z, 2" )?]
This equation may be manipulated into the form
V(s) = 7(s)T(s) (2-84)

where a single bar represents a column matrix or vector and a double

bar indicates a square matrix.
Let V(s) = the source vector = [vm]
where Vi ® the matrix elements of V(s)

-v2
= (-4wcs) {Eysine e "1 - Rv.'VZ"S‘"ej

m= 2,3,...,N-13 (2-85)

T(s) = the 1mpedanc§ matrix = [z_],
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where 2. = the matrix elements of Z(s)

m
Z

e .4[ P | Fglagt” )P g(aguzt s)

+ FO‘ZN-] oz os)]"RF[F1 (Zm,._] 2! ,S)-(YZA2+2’
Fylzgez’ s )4, (212" 48)] fdz-

ne=2,3,...N1

(2-86)
m= 2.3.- e |N']
and T(s) = the response vector = (1,1
where i, = the matrix elements of T(s)
"o unknown coefficient of ccnstant current in the
nth zone ns=2,3,...,N1 (2-87)

The unwieldy appearance of equation (2-86) may be sumewhat improved by

defining two functions

n+l R
Hy (2,08) = ‘/} ‘/; g de,'dz’ (2-88)
Om m /n A " 0
1th « [d? sin Y, ( ')ZJH (2-89)
w N s$in® —— ¢+ (z, - 2 -
4|
z 2' 'er
and Hy  (2,8) = f / 9—;—— de'dz’ (2-90)
mn 2" 0 2

e A s =




2 2 4 2 2.4
with rs = [(d® + Bah)sin —— + 4h° + (zm -2')] . (2-91)
Now equation (2-86) may be redefined as

1

2,2
Zyn " m ;Hom n(zmﬂ.s)-(v A +2)H°m n(zm.e‘.)

* Mg (zguyas)-Relhy (agys)- 0Pty (2s)

My (2008)] ‘ : (2-92)

When ¢,'=0° and z'=z, then r =0, (see equation (2-89)) thus the
integrand of Hom n(zm.s). see equation (2-88), will be singular. Tesche
[23 ] provides methods of evaluating integrals of this type. Note that
the integrand of Him n(zm.s) is never singular due to the term ah2 in
equation (2-91).

At vo‘-O". the integrand of H0 (zmﬂ.s) is singular when zmﬂ-z'.

n n+l mn

where 2 < z' <z '. Hence, at this point,

" SZg < z“”. (2-93)

Using equation (2-76) and (2-77) {t 1s seen that the singularity occurs
when

-3/2 < (m-n) < -1/2, (2-94)

m and 0 are integers, therefore HO (zm.s) is singular when m-n » -1 or
mn
when men-1. A similar argument may be applied to show that "0 (zm.s)
mon

is singular when m=n and that Ho (zm_‘.s) 13 singular when m=n+1,
mn




Following the procedure outlined by Tesche [23], et the integral of

Hom q(zm.s) at its singularity be T,.

Ty = Hy (zm.s) when m=n, (2-95)

L mn
where H, (zm.s) is given by equation (2-88). Transform variabies
mn

in (2-88) as follows:

Tet =9 ;
ez -2 (2-96) ‘

j dz = -dz'

and the Vimits of integration become

*: 2" J -z - z“J - 4/2

me=n m me=n

" J -z, - M _] . -8/2 (2-97) ‘
men m=n |

Thus,

"2

|

{

r pom |

T . f e Gz (2-98) |

L
wher'e ry * (22 + & sin? e/2) 1
Define T, = 0, n(zn+1”) when m = pn-1 (2-99)

and Ty e Hoh n(z”"") when m = n+l (2-100) !

it can be shown that T‘ - Tz . T3.
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l Equation (2-98) may be prepared for numerical evaluation by following

a procedure similar to that used by Tesche [23]. A Maclaurin series

_Yr]
for e is as follows:

vy 22 33

Yy
- 1
e 1 "YY'-' + 2! L'LTL+ e

- ('r]Y)n

- —_T (2-101) !
n=0 n :

Using only the first two terms of (2-101) equation (2-98) may be

I written as ,
(

" a2 |

| T, . (/Z f - dvdz) - 2may (2-102) |

. 0 2 ! |
a/2 . b .

also / L« 2an ; 3q [(%‘) + sin? % ] ‘- 2an(sin %—) f

b/ |

(2-103) |
and therefore
[ " 2 Yy
| ; T, = 2 mi §a+[(§3) + sin? %] f« |
4 v 0

il | 2 ;

-2 (j wn(sin %)d¢) - 27AY. (2-104) :

0

K]




B

The first term in the above equation is non-singular and can be evaluated

numerically, the second term is casily evaluated analytically be expressing

an{sin ¢/2) in a series, that is,

tn(stn ¢/2) = - 2~ L L cos nd
n=

',n
so _[ an(sin ¢/2) = -2 en 2 - J'—

n=]

n
j cos nedp
0

n 2 "
T, =2 ) zn[%»« ; (33) + sin ¢/2$ ]d¢
0

+ n(en 4 - Av)t .

Finally,

(2-105)

(2-106)

(2-107)

The integro-differential equation has been cast as a system of

matrices, which may be solved for the unknown induced current.

Application of the S1n961ar1ty Expansion Method

The singularity expansion method (SEM), formalized by Baum [23-25],
and applied by many others [1-3], [26], [27-30], is a method for charac-

terizing the response of scattering objects i1luminated by either

transient or steady-state electromagnetic radiation. A ganeral outline

describing the theory uf SEM will be presanted with special attention

given to areas of interest.




The time domain current may be determined from a knowledge of the
exterfor natural resonant frequencies of the scatterer in much the same
manner as tn classical circuit theory. The natural frequencies of the
"wire," s, are those such that the homogeneous version of equation
(2-84)

Z{s)T(s) = 0 (2~108)

has a non-trivial solution for I(s ). This implies that the determinant
of 7 must vanish at these complex natural frequencies; and therefore the

equation for determining these resonances becomes
det Z(s,) = 0 (2-109)

The natural frequencies must 1ie in the left-hand portion of the
s-plane since exponentially increasing currents are not allowed. Further,
the poles must occur in conjugate pairs since the time domain current is
real. No poles may reside on the jw axis since the radiation process
requires that the current on the wire be eventually zero. It 15 assumed,
without proof, that the poles are all simple. This has been substantiated
numerically [ 30].

The matrix equation,
. Z(s)T(s) = V(s) (2-110)
has as a solution

Ts) = T 1 (s)V(s). | (2-111)
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The time domain response is given by the {nverse léplace transform

in the form
00+jw

1 = ] st
1(t) = i) Z "' (s)V(s)e’“ds. (2-112)
uo-jw
Instead of numerically evaluating this integral along the %
contour, SEM assumes that the inverse of the impedance matrix may be

expressed as

-r

RG
..su

T I(s) = ) . (2-113)

$
This assumption allows evaluation of equation (2-112) by the Cauchy
Residue Theorem. Equation (2-113) fs a summation over all poles in the

complex s-plane. R, 1is defined as the system residue matrix at the pole

s This residue matrix is a dyadic and can be represented as the outer

“I

product of vectors independent of s as

R, = KT (2-114)
where H; is the natural mode vector and {is a solution to

(s, ¥, = 0 (2-115)
and € 1; the coupling vector, which satisfies the equation

s )T, = 0 (2-116)




(T denotes transpose). For the electric field formulation, where the
impedance matrix 1s symmetric, i.e. (f(sa) = fq(s“)), the natural mode

vector and coupling vector are equal, and therefore
- e T
R =CC. . (2-117)

Let E; be normalized such that its maximum element is real and equal to

unity.
[P ,]"‘e [c ] (2-118)
@ @ *normalized
and define
C =T , (2-119)
*normalized %0
such that
o~ T
R, = B“E“of“o ' (2-120)

where 8, js tiie normalization coefficient. Since

8T T T

7 V(s) n [ —Q O (2-121)
a

S—Su

The normalization coefficient 1s determined through consideration of a

particular singularity [2], Spe such that
= T -1 cFTHE «F T .
¢, Z(s)Z ()T, = LU T, = T, (2-122)

(NOTE: U is the identity matrix.)
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Substituting equation (2-121) into (2-122) yields

£T5(e) g Alele. By a-uT £ -5
or
e, TZ(:)E"E"T—"’ c,’c.. (2-123)
Note that
CpT"z’(sp)tYa =T, f(sp)ﬁf“ ('i'(sp)Ttp)Tc“ =0 (2-124)

so (2-123) may now be written as

—-T = T
y T,I(s) - Us )IEE,'T,

=T
5, C t'p. (2-125)

By definition,

I(s) - Us,) .
‘1':p -—s-s——s;——sL « T (s,) 60 (2-126) i

where f‘(sp) - %%]

And - is the Kronecker delta function. Taking the 1imit as s approaches

in (2-125) results in

p
T T T "
85,7 (s, )E 5T, = T,TC,. (2-127)
35 g
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From whi. we conclude that

1 !

e (2-128
P T (s )T )
P PP
Finally,
&+ Joo
1 0 : eSt

i(t) = m Y Nacao E:S:: ds (2-129)

oo-j-

= T
where N, = qucqo V;

is defined as the coupling coefficient. With the matrix elements of

V(s) defined by (2-85), let the incident field be a step-function plane

wave, such that
Eo(s) - Eols

The matrix elements of V(s) are then defined as

-YZ
Vp * -4ncg {Egsino e M -R g"12h sin e] (2-130)

v

where m= 2,3,..., N-1;

Evaluating (2-129) through the vasidue theorem will produce appropriate

Heaviside functions, which are viewed as enforcing causality [30], [1-3].

The exponential dependence of (2-129) {is expressed by

-y
VeSt wpe My . R e YR sin Oqst (2-131)

m v
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vhere
0 - '4'“0E° S'lﬂ e.

Equation (2-131) can be written as

t a [t z #2h sin el
S -2 /C S -
vest=ple m “Re ¢

m v

And now (2-129) becomes

. 1
MOC RN G,

CRE: D=
oo-J~

V;(s)ds

(2-132)

(2-133)

V. (s) 1s a vector with matrix elements defined by (2-132). Stated more

simply,
st st
V. (s) = [ve 1= V(s)e®".
If we let
- zm/c
z, ¢ 2h sin ©
and \ Ty - <

Then the matrix elements of V, (s) are

s(t-xl) s(t-rz)

- R.e 3.

st _
Ve Dfe

(2-134)

(2-135)

(2-136)

(2-137)

Evaluation of (2-133) may be carried out by using the residue theorem.
' 38
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Note that the complex natural frequencies, natural mode vectors,
and normalization coefficients are not functions of the incident field.
Only V;(t) is altered upon a change in the angles of incidence. Conse-
quently, once s, 8,, and C;o are found for a particular L, h, and a,
the current excited by any incident field is easily found.

The singularity expansion method, applied to this transient electro-
magnetic problem, produces a system of matrices, which are solved for

the induced current on the object cylinder as a function of time.

Approximations and Limitations

A summary of the approximations used thus far will be presented
so that the results obtained may be viewed in the proper perspective.
The assumptions and approximations are:
1. Current {s assumed to flow only in the direction of the cylinder
axis.
2. PBoundary conditions are enforced only on the axial compounent
of the tangential electric field.
3. End caps on the cylinder are ignored.
4. Current is assumed to be uniformly circumferentially distributed.
5. The moment method 1s an approximate numerical solution.
6. The "T" function, equation (2-107), for evaluating the singular
" {ntegral is an approximate solution.
7. The reflection method does not account for the currents induced
in the earth,
Assumptions one and two require that the cylinder be thin, L >» a.

The third assumption is valid {f a << A, this is seen to ba, because
39
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current induced on the end caps will not significantly contribute to the
scattered field [31]. Uniform circumferential variation of the current

is a valid approximation when the cylinder is many radii away from the
ground plane, The assumptions involved in Tesche's solution for the T
function places two restrictions on the problem [23. The main restriction
requiring L >> a, and secondly this formulation {s not applicable to

high frequency analysis.

The reflection method, although valid when the cylinder is located
far from the ground plane, 1s not valid when the cylinder is close to
the ground plane. Additional terms must be added to the equations to
account for the "surface wave" [14]. The term surface wave as used here

{s as defined by Norton [32]. In a dissertation by Jerry McCannon [16],

a study was done of & vertical dipole using several different formulations.

The reflection method was found to give answers within 1 to 2 percent
of the exact solution when the height of the dipole was greater than
3/8 A,

In a recent investigation by Sarkar and Strait [10], it was found
that the reflection method for the horizontal electric dipole produced

results within 10% of the exact Sommerfeld formulation 1f

h > % A, (2-138)
r
where
h = height of the dipole above the ground plane
€ " relative parmittivity of ground plane
A = free space wave length.
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Throughout this study an average of 15 was used for €ps relative

" permittivity of earth in this case, which results in h > .065 A,
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IIT1. NUMERICAL RESULTS

A computer code has been written to implement the equations developed
in the previous section. This code is used to determine the natural
resonances and natural mode vectors of the scatterer, The scatterer s
described by a general length, radius, and height above the ground
plane. The finitely conducting ground plane, assumed nonmagnetic p » o
is characterized by o, the conductivity, and ¢ = 0 the permittivity.
Stngularities, i.e.(natural resonances), occur in layers in the complex
plane ani1 will be described by Sy.n where “2" denotes the layer of the
pole and “n" the pole within the layer, this method of description {s
that used by Tesche [30]. This data will present trajectories of the
first three poles of the first layer, S110 S0 and $13°

Figure 3-1 shows the movement of the singularity I in the complex
plane as several system parameters are varied. The outer dashed spiral
through the points labeled A describes the movement of the pole S11 85
the scatterer is brought near the ground plane, the conductivity is held
constant at ¢ = 120.0 along this curve. it may be concluded that the Q
of the scatterer stabilizes as h/s becomes large since the dashed spiral
seems to become confined to a smaller area in the s-plane. For each
value of h/L, the conductivity is varied from o » 120, point A on the
dashed curve, to o w 1.2 x 10". point G; intermediate values are shown
at points B through F. The value o = 1.2 x 10°% and 0 = 1.2 x 1072

at points E and F respectively correspond to typical values of conductivity
42
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for normal terrain. Let the paths traversed by the pole for a given

value h/s be called the inner spirals. It is seen that each inner

spiral, corresponding to a given value of h/t, converges to point G

as the conductivity of the ground plane is reduced, this result is to be
expected since point G 1s the location of 51 for free space conditions
[29]. When the pole is displaced from position G along one of the inner
spirals more energy is being reflected from the ground plane, this

follows from the fact the incident i1lumination experiences a greater
discontinuity as the value of o is increased. In the 1imit as o becomes
very large all the incident energy would be reflected and the problem
becomes that of a cylindrical scatter over a perfectly conducting

ground plane. Figure 3-2 {s also a plot of 517 3s the value of h/z

and o vary, the relative permittivity {s held at five. Unlike Figure

3-1, point G 1s not the same in the 1imiting case of small o, but

rather each inner spiral converges to some point along an inner dashed
spiral. Although the conductivity becomes small the relative permittivity
remains at five, thus the incident wave will meet some discontinuity i
and there will be energy reflected from the ground plane. Figures 3-3
and 34 display similar information as described above. In Figure3-3
and 34 the relative permittivity is fifteen and one hundred respectively,
as o again gets small point B {s furthar from that of the free space
pos!tion.duc to the larger values of €. To swmmarize, displacement i
of the singularity from its free space position is a function of the
magnitude of discontinuity in the ground plane whether it be produced i
by the conductivity or relative permittivity. Figures 3-5 through 3-8 ‘
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may be {interpreted similarly. Note that in Figures 3-5 and 3-7 the
inner spirals cross the outer dashed spiral, this is most probably due
to numerical error. When the method of moments is employed, a rule of
thumb 1s to choose the number of zones, N, in accordance with

N = 10 x sL/7c. This implies that if s = ju, ten cells per half-
wavelength are used [30]. This rule was adhered to for pole Sy the
first resonance of the scatterer, but N was not changed for Sqpe OF
$13 this means that there were only 6 zones per half wavelength for
Sy2° and 3 zones per half wavelength for 13-

The real and imaginary part of the normalized mode vector for the
singuiarities S17 and Syp» are shown in Figures 3-9 through 3-12, Note
that the modes are either even or odd functions about the scatterer
midpoint. It 1s also seen that the imaginary part of the mcde vector
1s much less than the real part, indicating the modes are almost real
functions of position. The conductivity and relative permittivity were ;
also varied when calculating the normal mode vectors, results showed the

normal mode vectors being relatively independent of these quantities. i

e e e e =
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